Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

Identifieur interne : 000202 ( Main/Exploration ); précédent : 000201; suivant : 000203

Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.

Auteurs : Mei-Ho Lee [États-Unis] ; Louise H. Comas ; Hilary S. Callahan

Source :

RBID : pubmed:24363335

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous.

METHODS

To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations.

KEY RESULTS

Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples.

CONCLUSIONS

The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.


DOI: 10.1093/aob/mct276
PubMed: 24363335
PubMed Central: PMC3906969


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.</title>
<author>
<name sortKey="Lee, Mei Ho" sort="Lee, Mei Ho" uniqKey="Lee M" first="Mei-Ho" last="Lee">Mei-Ho Lee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Comas, Louise H" sort="Comas, Louise H" uniqKey="Comas L" first="Louise H" last="Comas">Louise H. Comas</name>
</author>
<author>
<name sortKey="Callahan, Hilary S" sort="Callahan, Hilary S" uniqKey="Callahan H" first="Hilary S" last="Callahan">Hilary S. Callahan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24363335</idno>
<idno type="pmid">24363335</idno>
<idno type="doi">10.1093/aob/mct276</idno>
<idno type="pmc">PMC3906969</idno>
<idno type="wicri:Area/Main/Corpus">000202</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000202</idno>
<idno type="wicri:Area/Main/Curation">000202</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000202</idno>
<idno type="wicri:Area/Main/Exploration">000202</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.</title>
<author>
<name sortKey="Lee, Mei Ho" sort="Lee, Mei Ho" uniqKey="Lee M" first="Mei-Ho" last="Lee">Mei-Ho Lee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">New York</settlement>
</placeName>
<orgName type="university">Université Columbia</orgName>
</affiliation>
</author>
<author>
<name sortKey="Comas, Louise H" sort="Comas, Louise H" uniqKey="Comas L" first="Louise H" last="Comas">Louise H. Comas</name>
</author>
<author>
<name sortKey="Callahan, Hilary S" sort="Callahan, Hilary S" uniqKey="Callahan H" first="Hilary S" last="Callahan">Hilary S. Callahan</name>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer (microbiology)</term>
<term>Acer (physiology)</term>
<term>Biomass (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Roots (physiology)</term>
<term>Quercus (microbiology)</term>
<term>Quercus (physiology)</term>
<term>Seedlings (microbiology)</term>
<term>Seedlings (physiology)</term>
<term>Soil (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acer (microbiologie)</term>
<term>Acer (physiologie)</term>
<term>Arbres (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Mycorhizes (physiologie)</term>
<term>Phénotype (MeSH)</term>
<term>Plant (microbiologie)</term>
<term>Plant (physiologie)</term>
<term>Quercus (microbiologie)</term>
<term>Quercus (physiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (physiologie)</term>
<term>Sol (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Température élevée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Acer</term>
<term>Plant</term>
<term>Quercus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Acer</term>
<term>Plant Roots</term>
<term>Quercus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Acer</term>
<term>Mycorhizes</term>
<term>Plant</term>
<term>Quercus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Acer</term>
<term>Mycorrhizae</term>
<term>Plant Roots</term>
<term>Quercus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Host-Pathogen Interactions</term>
<term>Hot Temperature</term>
<term>Phenotype</term>
<term>Species Specificity</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biomasse</term>
<term>Interactions hôte-pathogène</term>
<term>Phénotype</term>
<term>Sol</term>
<term>Spécificité d'espèce</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24363335</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.</ArticleTitle>
<Pagination>
<MedlinePgn>513-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mct276</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Interactions between roots and soil microbes are critical components of below-ground ecology. It is essential to quantify the magnitude of root trait variation both among and within species, including variation due to plasticity. In addition to contextualizing the magnitude of plasticity relative to differences between species, studies of plasticity can ascertain if plasticity is predictable and whether an environmental factor elicits changes in traits that are functionally advantageous.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">To compare functional traits and trait plasticities in fine root tissues with natural and reduced levels of colonization by microbial symbionts, trimmed and surface-sterilized root segments of 2-year-old Acer rubrum and Quercus rubra seedlings were manipulated. Segments were then replanted into satellite pots filled with control or heat-treated soil, both originally derived from a natural forest. Mycorrhizal colonization was near zero in roots grown in heat-treated soil; roots grown in control soil matched the higher colonization levels observed in unmanipulated root samples collected from field locations.</AbstractText>
<AbstractText Label="KEY RESULTS" NlmCategory="RESULTS">Between-treatment comparisons revealed negligible plasticity for root diameter, branching intensity and nitrogen concentration across both species. Roots from treated soils had decreased tissue density (approx. 10-20 %) and increased specific root length (approx. 10-30 %). In contrast, species differences were significant and greater than treatment effects in traits other than tissue density. Interspecific trait differences were also significant in field samples, which generally resembled greenhouse samples.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The combination of experimental and field approaches was useful for contextualizing trait plasticity in comparison with inter- and intra-specific trait variation. Findings that root traits are largely species dependent, with the exception of root tissue density, are discussed in the context of current literature on root trait variation, interactions with symbionts and recent progress in standardization of methods for quantifying root traits.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Mei-Ho</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Comas</LastName>
<ForeName>Louise H</ForeName>
<Initials>LH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Callahan</LastName>
<ForeName>Hilary S</ForeName>
<Initials>HS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031002" MajorTopicYN="N">Acer</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acer rubrum</Keyword>
<Keyword MajorTopicYN="N">Quercus rubra</Keyword>
<Keyword MajorTopicYN="N">Trait plasticity</Keyword>
<Keyword MajorTopicYN="N">branching intensity</Keyword>
<Keyword MajorTopicYN="N">maple</Keyword>
<Keyword MajorTopicYN="N">mycorrhizal colonization</Keyword>
<Keyword MajorTopicYN="N">oak</Keyword>
<Keyword MajorTopicYN="N">root architecture</Keyword>
<Keyword MajorTopicYN="N">root morphology</Keyword>
<Keyword MajorTopicYN="N">specific root length</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24363335</ArticleId>
<ArticleId IdType="pii">mct276</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mct276</ArticleId>
<ArticleId IdType="pmc">PMC3906969</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 1999 Jun;86(6):807-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10371723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Mar;101(3):1063-1071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 May;15(5):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 22;428(6985):821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Apr;166(1):49-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 May;21(5):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Apr;21(4):178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jan;29(1):115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 22;316(5832):1746-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17588930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18657210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Apr;12(4):351-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Jul;90(7):1773-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19694127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Feb;13(1):96-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19857987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 26;327(5969):1129-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 May;30(5):648-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Feb;21(2):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20422233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Dec;188(4):1065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21058949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Aug;21(6):537-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21287207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2003 Jul;43(3):459-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2012 Apr;27(4):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22244797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Sep;195(4):823-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22686426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Feb;130(4):515-524</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Jun;132(1):34-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Nov;125(3):389-399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>New York</li>
</settlement>
<orgName>
<li>Université Columbia</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Callahan, Hilary S" sort="Callahan, Hilary S" uniqKey="Callahan H" first="Hilary S" last="Callahan">Hilary S. Callahan</name>
<name sortKey="Comas, Louise H" sort="Comas, Louise H" uniqKey="Comas L" first="Louise H" last="Comas">Louise H. Comas</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Lee, Mei Ho" sort="Lee, Mei Ho" uniqKey="Lee M" first="Mei-Ho" last="Lee">Mei-Ho Lee</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000202 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000202 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24363335
   |texte=   Experimentally reduced root-microbe interactions reveal limited plasticity in functional root traits in Acer and Quercus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24363335" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020